If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-5Y^2-2Y+10
We move all terms to the left:
-(-5Y^2-2Y+10)=0
We get rid of parentheses
5Y^2+2Y-10=0
a = 5; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·5·(-10)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{51}}{2*5}=\frac{-2-2\sqrt{51}}{10} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{51}}{2*5}=\frac{-2+2\sqrt{51}}{10} $
| 0.7/3=x/2 | | 2m/3-1/6=1m/2 | | 2x^2+2x-209=0 | | 2x^2-2x-209=0 | | x2+20x-69=(x+23)(x-3) | | 3(x+2)-1=-2x-20 | | d^2−4d−60=0 | | 8500(0.95)^t=400*t+2000 | | 3(x+2-1=-2x-20 | | 3^4x=243 | | 1/2(-6x+12)=9 | | (x+1)^2=19 | | 11x^2+15/11=8x | | 11x^+15/11=8x | | x^-2x-1=8 | | 5x/3+2x/5-5=3x/5-1 | | 9x+12-4x=2x+9 | | s/7+32=38 | | s/7+19=21 | | 10x+10=15x | | 3m^2-m+1=0 | | 2/3-5/x=3/8 | | u/9-5=4 | | 21=m/7 | | 2^2x=-8 | | 3n+21=87 | | 24-y=10 | | m/4+18=m/3-1 | | w/7+26=32 | | 2+m=-4 | | ^2x=-8 | | 24-m=10 |